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Time-Series ML and Robustness Challenges
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Time-Series Data is Ubiquitous

 IoTs

Smart Homes

Smart Health

Wearables

Finance

Sales/Stocks

Customer demand

Monitoring systems

Smart grids

ECG

EEG

EMG
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ML Application of Time-Series

Classification

Human Activity Recognition, Medical diagnosis

Forecasting

Weather prediction, Stock prediction

 Imputation

Medical data collection

Outlier detection

Monitoring systems
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ML Models of Time-Series

Classical

ARIMA

VARMA 

Linear regression

Regression random forest

Deep learning

LSTM

 Inception time-series 

GAN time series

Transformers
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Time-Series Challenges

 Noise

 Complexity in pre-processing

 Modeling temporal behavior

 Periodicity / Stationarity

 Outliers

Data
Observation
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Time-Series Challenges

The need for robust ML models for time-series data:

The data is vulnerable to several corruption threats

 Importance for safety-critical application

Avoid catastrophic scenario

 Fall detection, medical diagnosis, prediction stability of smart grid
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Robustness challenges: Natural perturbations

 Random Noise

 Deployment of IoTs in real-world settings:

 Sensor mis-calibration

 Sensor’s change in orientation

 Record sampling mismatch  Temporal delays
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Robustness challenges: Adversarial perturbations

Medical case example:

Adversarial misrepresentation of the data in image-based AI systems.1

1: Finlayson, Samuel G., et al. "Adversarial attacks on medical machine learning." Science 363.6433 (2019): 1287-1289.

Adversarial misrepresentation of the temporal clinical data  in sensor-based AI systems.

Original example

Adversarial example



AAAI-2024  Tutorial on Advances in Robust Time-Series ML 11

Reliability challenges: Data Validation

Real data

Synthetic A

Synthetic B

t-Distributed Stochastic Neighbor Embedding showing the distribution 
of real-world data examples and synthetic data.

 The automatic validation of unseen time-series examples is ambiguous

Which of the synthetic data 
should we retain?
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Novel distribution taxonomy 

Taxonomy of generalized OOD detection 
framework, illustrated by classification 

tasks.2
2: Yang, Jingkang, et al. "Generalized out-of-distribution detection: A survey." arXiv preprint arXiv:2110.11334 (2021).

 The need to understand to which underlying distribution the data belongs
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Out-of-distribution for Time-Series Data

 Out-of-distribution detection is critical for safe AI deployment

 Challenges:

 Non-stationary property

 Temporal modeling complexity

 Semantic features

 Pre-processing

 Ambiguity of using synthetic data

 Ambiguity of Human-in-the-loop methods
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Adversarial robustness for time-series
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Classification Application for Time-Series

Human activity recognition

Monitoring systems

Medical diagnosis
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Why adversarial robustness

Prediction reliability against natural and hand-crafted 
perturbation

 Investigate worst-case scenario within the threat vector

 Improves over standard data augmentation techniques

Resilient against the over-confidence phenomenon of 
deep models
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Types of adversarial attacks

Black-box vs White boxSingle instance vs Universal attack

3:Moosavi−Dezfooli, et al. "Universal adversarial perturbations." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
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Input Output

Black-box model
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Class 2 0.015

Class 3 0.009 0.014

Class 4 0.011 0.012 0.011

Class 5 0.009 0.014 0.008 0.008

Class 6 0.007 0.012 0.007 0.008 0.003

Class 1 Class 2 Class 3 Class 4 Class 5

18

Limitations of standard 𝒍𝒑 norms

Standard adversarial algorithm rely on 𝑙𝑝-norm to 

constraint adversarial attacks

Case Study: WISDM dataset

Minimum normalized 𝑙2 distance between examples 
from different classes

Class 4

Class 5

→ Perturbations based on Euclidean 
distance can result in adversarial time-
series signals which semantically belong to 
a different class-label.
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General Optimization Framework

Time-series input 

𝑋

Target class-label 

 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

Bound 𝛿

Adversarial example 

𝑋𝑎𝑑𝑣

Such that: 

𝐹𝜃 𝑋𝑎𝑑𝑣 = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

Similarity(𝑋, 𝑋𝑎𝑑𝑣) ≤ 𝛿

Gradient descent 

update

Classification 

loss ℒ𝑙𝑎𝑏𝑒𝑙(. )

Similarity loss 

ℒ𝑆𝑖𝑚(. )

DNN classifier 

𝐹𝜃

?𝑙𝑝

→ How to address the similarity loss?
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Similarity Challenge

Approach 1:

• Extract statistical features that better 

represents the semantics of each 

class

Approach 2:

• Improve over 𝑙𝑝-norm-based distance 

by considering the temporal shifts
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Approach 1: Similarity within the statistical space

 We investigate statistical features as similarity features

 Time-series data are comprehensible using multiple statistical tools 

 Mean, Standard Deviation, Skewness…
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Adversarial transformation hypothesis

  Polynomial transformation: 𝑋𝑎𝑑𝑣 = 𝑃𝑇 𝑋  vs. 𝑋𝑎𝑑𝑣 = 𝑋 + 𝛿

 Inspired by power series, we approximate adversarial transformation 

using a polynomial representation with a chosen degree d: 𝑃𝑇 𝑋 =

σ𝑘=0
𝑑 𝑎𝑘𝑋𝑘 + Ο(𝑋𝑑+1)

 Reduces search complexity by generalizing to a universal perturbation

Theorem. Using the statistical space, a larger set of possible adversarial attacks 
can be generated by polynomial transformations than standard additive 
perturbations.
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Which features to choose?

 Domain-agnostic

 Domain-specific
 Accelerometers: Use of body acceleration computed from all 

accelerometer axes.

Convergence of the statistical loss using different statistical constraint sets

Default Position

Forward

Lateral

Vertical

Heading Rotation

Forward
Lateral

Vertical
Forward

Lateral

Vertical

Pitch Rotation
Amplitude

Disturbance

(a) (b) (c) (d)
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General results: Attack performance

Results of different adversarial algorithms attack performance under white-
box and black-box settings on different deep models.
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General results: Robustness performance

Results for adversarial training using adversarial examples from different 
adversarial algorithms for different deep models.
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Robust Wearable Applications: Sensor 
Disturbances and Missing Data
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Outline

Wearable applications and ML

Sensor disturbances in wearable devices

Missing data and solutions

Accuracy preserving imputation

Clustering-based imputation
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Wearable Devices for Health Monitoring

Cost of healthcare and incidence of chronic diseases 
are increasing

Wearable devices are popular for monitoring

Low-cost and small form-factor wearable devices offer great 
potential

 Integration of multiple sensors, communication and 
processing

28
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Implementing Health Apps on Wearables

 Data collection and segmentation
 Segment data into fixed or variable length windows

 Label the data with actual activities

 Feature generation

 Handcrafted features or deep learning

 Classifier training
 Supervised learning to map features to activity

 Trained using labeled feature and activity pairs

 Use trained classifier to identify activities
at runtime

Classifier Design

Stretch Sensor

Segmentation Algorithm

Accelerometer

Feature Generation

Runtime classification

29
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Challenges to Wearable Health Monitoring

Health Monitoring approaches use multiple sensors for 
high accuracy

Accelerometers, gyroscopes, stretch sensor

Data from sensors used to train the classifier

Most classifiers assume 

Clean data without any missingness 

Fixed sensor position and data distribution

Changes in data distribution affects classification 
accuracy

30
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Types of Anomalies in Wearable Applications

Anomalies

Disturbed DataMissing Data

User 

Error

Energy 

Constraints

Communication 

Challenges

Orientation 

Changes

Position 

Changes

Hardware

Disturbance

31
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Outline

Wearable applications and ML

Sensor disturbances in wearable devices

Missing data and solutions

Accuracy preserving imputation

Clustering-based imputation
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Human Activity Recognition (HAR) Application

 HAR identifies activities, such as walking, 
sitting, driving, jogging

 It is the first step to solutions for 
movement disorders

 HAR can provide valuable insight to health specialists

 Applications of HAR
 Patient rehabilitation

 Fall detection

 Physical activity promotion

We must know what the patient is doing to reach a conclusion
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Sensor Disturbances in HAR

We consider four major types of sensor disturbances

Heading rotation

Changes sensor values in forward and lateral directions

Pitch rotation

Changes sensor values in forward and vertical directions

Amplitude and sensor hardware disturbances

We show methods to handle disturbances with no overhead

Default Position

Forward

Lateral

Vertical

Heading Rotation

Forward
Lateral

Vertical
Forward

Lateral

Vertical

Pitch Rotation
Amplitude

Disturbance

(a) (b) (c) (d)

34



AAAI-2024  Tutorial on Advances in Robust Time-Series ML

Overview of the Proposed StatOpt Approach

35

User Data and Labels
Train Baseline 

Classifier

Sensor

disturbances

Additive 

transform

Classify

+Los

s

Update transformAugmented training 

examples

Full Training Data

Train Reliable 

Classifier

Sensor data with 

disturbances

Reliable

Activity 

Classification

Online

Design time

Stat. Loss

Classification 

Loss
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Statistical Optimization Problem setup

StatOpt creates new training examples to capture 
disturbances

We define disturbances as additive perturbations 𝑝

Examples generated by StatOpt can be written as:

𝑋′ = 𝑋 + 𝑝

New examples must satisfy the following requirements
Time-series sensor input

Natural sensor disturbances 

that can affect the 

classifier's prediction

Class boundaries learned by 

ML classifier from training 

data

– Misclassification by the classifier

– 𝑝 describes the natural disturbances 
in the sensor data

▪ It is challenging to define 𝑝 
explicitly 

36
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Statistical Optimization Algorithm Setup

 We employ statistical features 𝑆𝑖  to generate training examples

 The statistical features ensure that the distribution of data does not 
deviate

 Create perturbation 𝑝 such that 𝑆𝑖 𝑋 − 𝑆𝑖 𝑋′ < 𝛜

1. Body acceleration
 Total acceleration across all three directions of motion

 Generally, body acceleration is same even if sensor is disturbed

2. Skewness
 Measures the symmetry of the distribution

3. Kurtosis
 Measures the distribution tail of the input values

37
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Statistical Optimization Algorithm

Define two losses to obtain perturbation 𝑝 

Statistical Loss

𝓛𝒔𝒕𝒂𝒕 𝒑, 𝑿  ≜ 

𝑺𝒊

||𝑺𝒊 𝑿 + 𝒑 − 𝑺𝒊(𝑿)||

Classification loss
𝓛𝒍𝒂𝒃𝒆𝒍 𝒑, 𝑿, 𝒚′  ≜ max[max

𝒚≠𝒚′
𝒁𝒚 𝑿 + 𝒑 − 𝒁𝒚′(𝑿 + 𝒑), 𝝆]

where 𝒁𝒚 is the output of the logits layer

Final loss function
𝓛 𝒑, 𝑿 =  𝓛𝒍𝒂𝒃𝒆𝒍 𝒑, 𝑿, 𝒚′ + 𝓛𝒔𝒕𝒂𝒕 𝒑, 𝑿
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Theoretical Analysis of StatOpt

 We derive theoretical upper bounds for disturbances

 The bound ensures that classifier will provide reliable 
classifications if disturbances are within the bounds

 Reliability certificates analogous to security certificates

 Euclidian distance-based certification is not suitable

 We propose to use Rényi divergence of a Gaussian distribution

 The certification provide the following guarantee,

𝑭𝜽 𝑿 = 𝑭𝜽 𝑿 + 𝒑 , 𝒊𝒇 𝒑 ≤ 𝑬𝒍𝒊𝒎

where 𝑭𝜽 is the classifier and 𝑬𝒍𝒊𝒎 is the certification

39
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Experimental Setup

 Wearable Device
 TI CC2650 MCU

 ARM Cortex M4 processor

 Datasets
 w-HAR HAR dataset

 Accelerometer and stretch sensor data

 8 activities from 22 users

 Orientation, amplitude, and sensor disturbance

 WISDM

 Accelerometer data from smartphone

 6 activities from 29 users

 Orientation disturbance

40



AAAI-2024  Tutorial on Advances in Robust Time-Series ML

Accuracy of StatOpt Data Generation

Statistical features 
closely match the 
original sensor data

Original StatOpt Rotated

N
u

m
b

e
r 

o
f 

e
x
a

m
p

le
s

t-SNE representations are 
overlapping for StatOpt data
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Classification Accuracy Comparison

 Reliable classifier has accuracy close to the no disturbance case

 C&W method fails to recover accuracy while the baseline has 
overhead

Naive classifier Classifier w/ baseline correction

Reliable classifier w/ StatOptCarlini & Wagner

w-HAR

w-HAR

WISDM

w-HAR

42
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Implementation Overhead

We characterize the implementation overhead on TI-
CC2650

StatOpt has no overhead for data recovery

43
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Outline

Wearable applications and ML

Sensor disturbances in wearable devices

Missing data and solutions

Accuracy preserving imputation

Clustering-based imputation
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Missing Data Overview

 Random Missing data
 Isolated missing samples not clustered around any particular time 

instance.

 Occurs due to limited communication bandwidth and buffer overflow in 
a sensor. 

 Block Missing data
 A sequence of samples are missing

 Occurs when one or more sensors have to go into a low-power state

We showcase two complementary methods to impute data

Random Missing 

Data
Block Missing 

Data

45



AAAI-2024  Tutorial on Advances in Robust Time-Series ML

Light-Weight ML Algorithm for Missing Data

 Generative imputation networks recover raw data for 
classification
 However, some applications do not need exact data recovery

 Moreover, generative networks incur high overhead

 Trade-off between accuracy & overhead

 Maximize the accuracy without imputing the data exactly
 Reduce memory overhead of imputation by avoiding generative 

networks

We show Accuracy-Preserving 
Imputation (AIM) for wearable 

apps

46
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Accuracy-Preserving Imputation (AIM)

AIM is based on two key insights

Exact data recovery is not needed if the application accuracy 
is preserved

Can train the ML model to be robust to small deviations from 
the exact data

47
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AIM: Problem Setup

 Consider time-series sensor data 𝑋 ∈ 𝑅𝑛×𝑇 data
 𝑛 is the total number of sensor channels

 𝑇 number of samples in each input window

 Class label for each window is 𝑦

 Subset of channels {𝒋}0≤𝑗≤𝑛 are missing at runtime for 𝑋

 Using zero inputs for missing data, we get sensor data as

෨𝑋{𝑗} = ቊ
0𝑇 , if 𝑖 ∈ {𝑗}
𝑋𝑖 , if 𝑖 ∉ {𝑗}

 Goal of AIM is to find imputation patterns for missing data

48
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AIM Algorithm Setup

 AIM obtains a single imputation pattern for each missing data 
scenario
 The pattern must maximize classification accuracy for application

 We push the classifier to predict the correct labels from the 

available channels

 Write the imputation pattern as

 Imputation does not depend on observed sensor data

 Instead, we use a search algorithm to find best imputation 
patterns

ℐ{𝑗} = ቊ
ℐ𝑖 , if 𝑖 ∈ {𝑗}
𝑋𝑖 , if 𝑖 ∉ {𝑗}

and 𝐹𝜃 𝑋 ∼ 𝐹𝜃(ℐ 𝑗 )

49
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AIM Algorithm: Imputation Pattern Search 

Given {𝑗}: We find ℐ{𝑗}𝑠. 𝑡. ∀𝑋, 𝐹𝜃 𝑋 ≈ 𝐹𝜃 ℐ 𝑗

Search objective
min

 ℐ𝑗∈ 𝑗

 ℒ 𝐿𝑜𝑔𝑖𝑡𝑠 𝐹𝜃 𝑋 , 𝐿𝑜𝑔𝑖𝑡𝑠 𝐹𝜃 ℐ 𝑗

ℒ 𝑖𝑠 𝑡ℎ𝑒 𝑀𝑆𝐸 between 𝐿𝑜𝑔𝑖𝑡𝑠 values 𝑜𝑓𝐹𝜃 𝑋  𝑎𝑛𝑑𝐹𝜃 ℐ 𝑗

Minimize objective to find imputation patterns

  Classifier 𝐹𝜃 for original input 𝑋 (no missingness) and input 
with imputation ℐ 𝑗
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Experimental Setup

 We employ the Odroid-XU3 board for evaluations

 We use four diverse wearable sensor-based timeseries datasets
 Shoaib

 PAMAP2

 eRing

 Ring to capture data along four dimensions

 SR-SCP1

 EEG data from six channels for a healthy subject. 

 We use a 1-D convolutional neural network as classifier for all 
datasets
 Adam optimizer over 20 epochs for training
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Classification Accuracy with AIM

AIM achieves higher accuracy compared to 
baselines
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Implementation Overhead

 Key advantage of AIM is lower energy and memory overhead

 AIM consumes less than 10 mJ per imputation

 Energy savings are close to 98% for all datasets except eRing
 eRing has lower energy savings about 74% (has lower computation 

requirements for both GAIN and AIM)

 AIM can improve the battery life of wearable health monitoring 
devices by an order of magnitude

Shoaib

PAMAP2
eRing
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Clustering-based Energy-Efficient Data Imputation

AIM imputation maintains high classification accuracy

However, it does not consider input data when 
obtaining imputation

Actual data patterns for feedback besides the 
classification

Leads to better health outcomes through careful analysis

We show a clustering-based approach to 
account for input data in imputations
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Clustering-based Energy-Efficient Data 
Imputation

Online

Offline
Multi-sensor HAR system

Sensor data 

clustering

Representative window for 

each cluster
Generate mapping 

table with clusters

Train reliable 

classifier 𝐹𝜃
∗

Predict clusters for 

missing sensors

Detect missing 

sensors

Activity 

classification

Impute using rep. 

windows

Train baseline

ML classifier 𝐹𝜃

Distance threshold for 

missing data

Augment training 

data with rep. 

windows

Reliable classifier 

𝐹𝜃
∗

Rep. 

windows
Distance 

thresholds
Mapping 

table

Sensors

Sensors

CIM enables efficient detection and imputation at runtime
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Sensor Data Clustering

 Human activities are generally repeatable in nature
 Activity patterns have variations across users and time

 Repeatability of activities, in turn, leads to repeatability of sensor data 
patterns

 Different classes of activities have distinct sensor data patterns
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 Based on this insight, we can 
cluster similar data patterns

 We employ 𝑘-means 
clustering
 Input: Sensor data 𝕏, No. of 

clusters

 Output: Cluster centroids 𝒞
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Representative Windows for Each Cluster

 Sensor data clusters are used for imputation
 Infeasible to store all windows in a cluster

 Obtain a representative window for each 
cluster

 Representative window presents an average 
case Window that is closest to all other 
windows
 Provides high classification accuracy for the cluster
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Calculate pairwise distance from a 
window 𝒘 to all other windows

Obtain mean distance 𝒅𝒘 from window 
𝒘 to other windows

Perform classification with each 
candidate rep. window 𝒘

Cluster windows

Choose window with highest accuracy 
as the rep. window
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Data Imputation with Sensor Clusters

 We use sensor data clusters to impute missing data at runtime

 Construct a mapping table to learn cluster mapping across 
sensors
 Obtain unique combinations of clusters and record # occurrences

Sensor 1 cluster Sensor 2 cluster ⋯ Sensor 𝑴 cluster Count

3 4 5 20

1 2 12 25

3 4 5 10

 Mapping table is used to predict cluster of missing sensor

 Use representative window of missing cluster as imputation

Low-overhead imputation by avoiding generative networks
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Summary of Imputation with CIM

Predict clusters for 

missing sensors

Detect missing 

sensors

Activity 

classification

Impute using rep. 

windowsReliable classifier 𝐹𝜃
∗

Rep. windows

Distance thresholds

Mapping table
Sensors

CIM performs following steps to detect and impute missing data at runtime
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Classification Accuracy with CIM

 Impute missing data across all missing data scenarios for three 
datasets

 Compare CIM against two baseline approaches

 Generative adversarial imputation networks (GAIN)

 K-nearest neighbors (KNN)

 CIM has higher accuracy than GAIN and KNN

 GAIN loses accuracy with increasing number of missing sensors

Accuracy with no

missing sensors
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Implementation Overhead

We characterize the implementation overhead on 
Odroid-XU3

Execution time overhead of CIM is lower than 1 ms for 
all three datasets

CIM achieves close to 100% energy savings compared 
to GAIN
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Take-home Messages

 Wearable devices are enabling interesting applications

 Sensor disturbances and missingness lower real-world 
performance

 We must account for these at runtime

 Key requirements to consider:
 Application accuracy and performance

 Similarity of data imputation or generation

 Overhead in terms of energy, memory, and latency

 Trading-off accuracy and overhead is critical
for device sustainability and user experience
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Temporal adversarial robustness for time-
series classification
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Similarity Challenge

TSA-STAT can capture successfully

this similarity case

TSA-STAT is too complex for this 
perturbation case
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Approach 2: Temporal behavior

A similarity measure that accounts for shifts along 
temporal axis, scaling and frequency change

Two repetitions of the same walking sequence were 
recorded using a motion-capture system.4

4: Olsen, Niels Lundtorp et al. "Simultaneous inference for misaligned multivariate functional data." Journal of the Royal Statistical Society Series C: Applied Statistics 67.5 (2018): 1147-1176.
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Dynamic Time Warping

 We investigate Dynamic Time Warping approach for adversarial 

attacks.

 Dynamic Time Warping seeks for the optimal temporal 

alignment.

 A temporal alignment is a matching between time indexes 𝑡𝑖of 
the two time-series 𝑡1 and 𝑡2.
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Dynamic Programming for DTW

𝐷𝑇𝑊 𝑋, 𝑆 = min
𝜋𝑘

ฮ𝑋𝑖 ԡ−𝑆𝑖

 Iterative – Quadratic complexity – Slow!!

𝜋1 𝜋2
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DTW vs. Euclidean Space: Similarity Comparison

 DTW space exhibits better clustering for same-class data than Euclidean space

→ How to overcome the challenges of implementing DTW in the adversarial 
setting?

Euclidean SpaceDTW Space

t-Distributed Stochastic Neighbor Embedding showing the empirical class distribution of real-world 
data examples and their similarity using DTW measure and Euclidean distance.
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 At each iteration:
1. Compute the optimal DTW alignment

2. Use the alignment in the gradient and create an adversarial example

 High computational cost

 Single adversarial example

69

Naïve DTW Approach
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Key Insight: Random Alignment Path Approximation

We formalize the following theorem to devise an 
effective and efficient algorithm

Theorem. For a time-series X and a random alignment path P, the resulting 
adversarial example from DTW-AR is equivalent to using standard DTW 
computation (tight approximation).
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Key Insight: Random Alignment Path Approximation

Theorem. For a time-series X and a random alignment path P, the resulting 
adversarial example from DTW-AR is equivalent to using standard DTW 
computation (tight approximation).

How?
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Path-specific distance optimization

 We define a new metric PathSim as a similarity measure 
between two alignment paths P1 and P2 in the DTW cost matrix 
that satisfies the distance axioms

 We define 𝑃𝑖 = {𝑐1
𝑖 , … , 𝑐𝑙𝑒𝑛(𝑃𝑖)

𝑖 }
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Path-specific distance optimization

Example of the empirical convergence of the optimal alignment path between the optimized example and the original 

example at the start of the algorithm (dotted red path) and at the end (red path) to the given random alignment path (blue 
path). 
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DTW-AR Framework

 The choice of the alignment range is 
important for better example 
generations
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DTW-AR Results: Computational Efficiency

  Overall computational cost is significantly reduced 
using DTW-AR

Average runtime per iteration
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DTW-AR Results: Effectiveness of Adversarial Examples

 DTW-AR is capable of fooling 
DNNs w/o existing adversarial 
training.

 DTW-AR is effective in 
predicting the original label of 
adversarial examples with high 
accuracy.
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Explicit Min-Max Adversarial Training 
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All Alignment Path Approximation

 Instead of a single optimal alignment between 𝑥 and 𝑥′, 
we desire a measure that takes all possible alignments 
𝜋 ∈ Α into consideration
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Global Alignment Kernel (GAK)

 Advantages of using GAK as an alignment-based similarity 
measure:

1. Differentiable

2. Positive definite

3. Coherent measure over all possible alignments

4. More general than optimal alignment measure (Dynamic Time Warping)
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Proposed approach: Explicit training for robustness

Explicit training for robustness

The inner maximization problem serves the role of 
an attacker whose goal is to find adversarial 
examples that achieves the largest loss.
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Proposed approach: Explicit training for robustness

Explicit training for robustness

The inner maximization problem serves the role of 
an attacker whose goal is to find adversarial 
examples that achieves the largest loss.

The outer minimization problem serves the role of 
a defender whose goal is to find the optimal 
parameters of the deep model
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Optimization Challenges

GAK gradient estimation is computationally expensive

Randomly sample a constant number of alignments 𝜋 ∈
Α at each iteration to estimate the gradient

Sampling paths leads to biased gradient estimate → 
SGDA does not hold

No previous analysis on min-max optimization with 
compositional structure
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Method: SCAGDA Optimization Algorithm

Novel stochastic compositional alternating gradient 
descent ascent algorithm

Solves a family of nonconvex-nonconcave min-max 
compositional problems
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RO-TS Instantiation of SCAGDA

 Do not require all alignments for GAK estimation

✓ Efficient training

✓ Higher scalability

for gradient descent

for gradient ascent
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RO-TS Instantiation of SCAGDA

The training algorithm:

1. Sample a mini-batch of training data

2. Compute the stochastic gradient ∇𝜔 and update primal variable 𝜔 

3. Apply Moving Average (MA) to control the variance of the estimation of 𝑘𝐺𝐴𝐾

4. Estimate the stochastic gradient ∇𝑎 over a random subset of alignments of 𝑘𝐺𝐴𝐾

5. Update dual variable 𝑎 using gradient ascent
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RO-TS Theoretical Results

  Theorem #1: SCAGDA converges in 𝑂(
1

𝜖2) iterations to 

achieve 𝜖-primal gap

The empirical results match the proposed theory

Empirical convergence of ROTS algorithm.
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RO-TS Theoretical Results

  Theorem #2: The approximation error of gradient 
computation with sampled alignment paths reduces 
over iterations and becomes tight when SCAGDA 
converges

The empirical results match the proposed theory

The accuracy gap in the gradients over 
weights 𝐺𝑤 and over perturbations 

𝐺𝑎 using 5%  vs. all of the alignments

Comparison of the computational 
runtime between both settings
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RO-TS Training Effectiveness – Setting #1

RO-TS vs. Adversarial training

Comparison of

         RO-TS algorithm 

         Fast Gradient Sign

          Projected Gradient Descent 

using Gaussian perturbation 𝜎 and adversarial 

perturbation 휀 on input  
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RO-TS Training Effectiveness – Setting #2

RO-TS: GAK vs. 𝑙2

Comparison of

         RO-TS algorithm 

         𝑙2

using Gaussian perturbation 𝜎 and adversarial 

perturbation 휀 on input  
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Robust Multivariate Time-Series Forecasting:
Adversarial Attacks and Defense Strategies

Based on a joint work with 

Linbo Liu1, Youngsuk Park1, Hilaf Hasson2 and Luke Huan1

https://openreview.net/forum?id=ctmLBs8lITa

1AWS AI Labs
2Intuit

https://openreview.net/forum?id=ctmLBs8lITa
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OUTLINE

Adversarial Attack in Forecasting

New Attack in Multi-variate Time-Series Settings

Deterministic Attack

Probabilistic Attack

Defense Strategies

Provable Defense

Minimax Defense

Empirical Studies

Dataset & Metric

Experiment Setup & Results
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OUTLINE

Adversarial Attack in Forecasting

New Attack in Multi-variate Time-Series Settings

Deterministic Attack

Probabilistic Attack

Defense Strategies

Provable Defense

Minimax Defense

Empirical Studies

Dataset & Metric

Experiment Setup & Results
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Adversarial Noises

Deep Learning (DL) models are brittle against 
adversarial noises 

    [Szegedy et al., 2013, Goodfellow et al., 2014]

Misleading Classification with Adversarial Noises:

Notations: 

g(x) is a trained classifier; x is a given input to be attacked

c != class(x) is the target of the attack
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Example: Classification

Adversarial noise can mislead the classification outcome  
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Regression

Regression: No discrete class, continuous output

A (slight) reformulation: [Dang-Nhu et al., 2020]

Notations:

g(x) is the trained regressor; x is a given input to be attacked

z is the target attack

constrains the noise to be 

human-imperceptible
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Regression

Regression: No discrete class, continuous output

A (slight) reformulation: [Dang-Nhu et al., 2020]

Notations:

g(x) is the trained regressor; x is a given input to be attacked

z is the target attack

distance function

e.g., L2 distance
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Given x = (x1, x2, …, xT) and prediction horizon h > 0

    compute p(z | x) where z = (xT+1, xT+2, …, xT+h)

Probabilistic Auto-Regressive Model:

    

    where 𝜃 is a (deep) neural net parameterization 

97

Probabilistic Forecasting
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Part of the Amazon SageMaker toolkit

DeepAR parameterization

    
     where h is implemented by a long short-term memory  
     network [Hochreiter & Schmidhuber, 1997] 

     parameterized by 𝜃:  

98

Probabilistic Forecasting: DeepAR [Salinas et al., 2020]
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Recurrent Network with LSTM cell
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Maximizing the probability of observing training data

     x = (x1, x2, …, xT)

     

    How do we attack this model?

 
100

Fitting DeepAR
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Downstream decision-making depends on a statistic

     s(z) of where z = (xT+1, xT+2, …, xT+h)

     For example, s(z) = (xT+h / xT) – 1
     i.e., gain of investing 1$ at time T & selling at time T + h

     Market manipulation: Artificially influence stock price
     to make profit [Allen & Gale, 1992; Diaz et al., 2011]
     
     i.e., perturbing x to influence s(z), 
            triggering reaction of others

 101

Attacking Probabilistic Forecasting Model
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Finding perturbation such that the forecast s(z) is as 
close as possible to a manipulation target tadv 

    [Dang-Nhu et al., 2020; Yoon et al., 2022]

     

    

 102

Attacking Probabilistic Forecasting Model

constrains the noise to be 

less visible
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Previous work shows feasible attacks in univariate 
time-series (TS) setting

Are there different attacks in multivariate time-series 
(MTS) settings?

103

Attacking Multivariate Forecasting Model
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Are there different attacks in multivariate time-series 
(MTS) settings?

More stealth attack patterns:

Attack one TS by perturbing observations of other TS

    (indirect attack)

Attack one TS by perturbing a small subset of other TS

    (sparse attack)

104

Attacking Multivariate Forecasting Model
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The adversary is only able to select a few stocks to 
manipulate

To make the attack stealth, stock A must not be 
manipulated

     

    

 

105

Example
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10-dim DeepVAR [Salinas et al., 2020] to model 10 TS

Attack TS 5 to mislead the prediction of TS 1

Left: plot of authentic (orange) and perturbed (blue) TS 5

No attack on TS 1 to 4 & TS 6 to 10

106

Simulated Experiment
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10-dim DeepVAR [Salinas et al., 2020] to model 10 TS

Attack TS 5 to mislead the prediction of TS 1

Right: plot of prediction of TS 1

Attacking TS 5 can mislead the prediction of TS 1

107

Simulated Experiment
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Two new attack patterns to MTS forecasting:

Deterministic Attack

Probabilistic Attack

Two defense strategies:

Provable Defense via generalized random smoothing

Minimax Defense via empirical attack simulation

108

Tutorial Focus
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Dataset & Metric

Experiment Setup & Results



AAAI-2024  Tutorial on Advances in Robust Time-Series ML

Previous noise characterization:

Low-energy noise, but not necessarily sparse & indirect

How to ensure sparsity, indirectness & low energy

110

Adversarial Noise Revisitation
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Sparse, Indirect & Low Energy
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Sparse, Indirect & Low Energy
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Putting All Together …
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Deterministic Attack: Low-Energy Constraint

Solving 

     

     is intractable due to the discrete constraint
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Deterministic Attack: Low-Energy Constraint

Low-Energy Approximation: Using projected GD
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Deterministic Attack: Sparse, Indirect Constraints

 Impose Sparse & Indirect via

    which can be solved effectively 
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Deterministic Attack: Sparse, Indirect Constraints

Solving:

Keeping 𝜅 columns with largest sum, discarding the rest
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Deterministic Attack: Algorithm

 Initialize 𝛿 = 0

Per iteration:

Update 𝛿 via PGD to enforce low energy

Make 𝛿 sparse via solving
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Adversarial Noises as Random Variables
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Distribution with Sparse Support
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Expected Sparsity
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High-Confidence Sparsity
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Can We Sample From It?
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Putting Together: Sparse Layer
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Adversarial Noises via Optimizing Sparse Layer



AAAI-2024  Tutorial on Advances in Robust Time-Series ML 126

OUTLINE

Adversarial Attack in Forecasting

New Attack in Multi-variate Time-Series Settings

Deterministic Attack

Probabilistic Attack

Defense Strategies

Provable Defense

Minimax Defense

Empirical Studies

Dataset & Metric

Experiment Setup & Results



AAAI-2024  Tutorial on Advances in Robust Time-Series ML 127

Randomized Smoothing [Cohen et al., 2019]
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Adaptation of RS to Forecasting
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Minimax Defense

Model parameters are updated to minimize worst-case 
impact of a simulated attack (in-training defense)

Min-step: Update attack parameters to minimize the 
gap between the forecast & manipulation target

Max-step: Update forecast parameters to maximize 
the gap between the forecast & manipulation target
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Minimax Defense

Min-step: Update attack parameters to minimize the 
gap between the forecast & manipulation target
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Minimax Defense

Max-step: Update forecast parameters to maximize 
the gap between the forecast & manipulation target
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Minimax Defense

Min-step: Update attack parameters to minimize the 
gap between the forecast & manipulation target

Max-step: Update forecast parameters to maximize 
the gap between the forecast & manipulation target

Probabilistic attack (thanks to its differentiability) can 
be utilized to enable end-to-end optimization
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Dataset

TRAFFIC [Asuncion & Newman, 2007]: hourly 
occupancy rate (between 0 & 1) of 963 SF car lanes

ELECTRICITY [Asuncion & Newman, 2007]: hourly 
consumption rate from 370 customers

TAXI [Taxi and Commission, 2015]: no. of taxi rides 
every 0.5 hour across 1214 NYC locations (2015-2016)

WIKI [Lai, 2017]: daily page views of 2000 Wiki pages
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Data Statistics
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Metric
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Metric
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Experiment Setup
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Experiment Setup
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Result: ELECTRICITY
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Result: TRAFFIC
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Result: Attack Transferability
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Result: Attack Transferability
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Result: Attack Transferability
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More Experiments

Please refer to:

https://openreview.net/forum?id=ctmLBs8lITa

Our source code is available at:

https://github.com/awslabs/gluonts/tree/dev/src/gluonts
/nursery/robust-mts-attack

https://openreview.net/forum?id=ctmLBs8lITa
https://github.com/awslabs/gluonts/tree/dev/src/gluonts/nursery/robust-mts-attack
https://github.com/awslabs/gluonts/tree/dev/src/gluonts/nursery/robust-mts-attack
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Take-Home Messages

Attack:

1. Attack to MTS forecasting can be indirect & sparse

2. Probabilistic attack is more effective than 
deterministic attack under extreme sparse settings

3. Attack crafted in univariate settings does not translate 
to MTS settings
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Take-Home Messages

Defense:

1. Randomized Smoothing (RS) [Cohen et al., 2019] can 
be adapted to forecasting with provable guarantee

2. Minimax Defense achieves the best results in most 
cases (though with no guarantee)
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OOD detection and synthetic data generation 
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Challenges of data collection

Vast amounts of time series are collected from IoTs and 
wearable devices

Data labeling is costly:

User self-labeling

Event rarity that leads to imbalanced classes

Ambiguity of labeling post collection

Picture of a dog with a plastic 
ball

???
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Generative AI as a solution for synthetic data

Several approaches were proposed for time-series:

Adversarial networks
 [6] Yoon, Jinsung, Daniel Jarrett, and Mihaela Van der Schaar. "Time-series generative 

adversarial networks." Advances in neural information processing systems 32 (2019).

 Festag, Sven, Joachim Denzler, and Cord Spreckelsen. "Generative adversarial networks for 
biomedical time series forecasting and imputation." Journal of Biomedical Informatics 129 
(2022): 104058.

  Long-term forecasting
 Li, Yan, et al. "Generative time series forecasting with diffusion, denoise, and 

disentanglement." Advances in Neural Information Processing Systems (2022)

t-SNE visualization of the distribution of 
Time-GAN generated examples[6]
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Challenges of Generative AI for time-series data

 Conditional generative process
 Class-specific synthetic data

 Condition unseen during data collection

 Reconstruction error related metrics
 Depends on the data collected

 Does not generalize on unseen feature combinations

 Discriminative models that aims to classify synthetic vs original 
data
 Modeling/Data bias

 Train on Original/Test on Synthetic or Train on Synthetic/Test on 
Original
 Modeling/Data bias
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Reliability challenges: Data Validation

Real data

Synthetic A

Synthetic B

t-Distributed Stochastic Neighbor Embedding showing the distribution 
of real-world data examples and synthetic data.

 Data validation through Out-of-Distribution Lens

Which of the synthetic data 
should we retain/discard?
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Data Distribution Challenge

  Out-Of-Distribution (OOD) samples are anomalous or 
deviant data from the training set

  OOD space is a main concern of AI safety in general

𝐷𝑖𝑛

𝐷𝑜𝑢𝑡
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Key insight: Decomposition

 Image: Foreground(Important) + Background

Time-series: Pattern + Noise
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STL Decomposition

Seasonal-Trend decomposition using LOESS (STL) is a 
statistical method of decomposing a Time Series into 
three components: 

 Remainder: Noise

 Trend: Describes the increasing /decreasing in 
the observations overtime.

 Seasonal: The regular temporal pattern in the 
observations.
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OOD in Time-Series Domain: Hypothesis

 Each time-series example (𝑋𝑖 , 𝑦𝑖 ) from the in-distribution data 
𝐷𝑖𝑛 consists of two components. 

1. A class-wise semantic pattern 𝑆𝑦 for each class label 𝑦 ∈

 𝑌 representing the meaningful semantics of the class label y.

2. A remainder noise 𝑟𝑖 representing an additive perturbation to the 
semantic portion. 

= +

𝑋𝑖 𝑆𝑦 𝑟𝑖
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OOD in Time-Series Domain: Hypothesis

 Let 𝑋 ∈  𝑅𝑛×𝑇  is a time-series signal and 𝑦 ∈  𝑌 = {1, … , 𝐶} be 

the corresponding class label. As 𝑋 =  𝑆𝑦  +  𝑟 and 𝑆𝑦 is a 

deterministic component: 

  𝑋 is an OOD example if 𝑝(𝑋 |𝑦) ≠  𝑝(𝑟|𝑦) 

  𝑋 is an in-distribution example if 𝑝(𝑋 |𝑦)  =  𝑝(𝑟|𝑦).
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Seasonal Ratio Score Framework
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Motivation for VAEs

Ease of Training

Compared to other methods such as GANs, VAEs are easier to 
train

Structured Latent Space

VAEs are designed to produce a regularized continuous latent 
space

 Interpretable Generative Tasks

 Interpretable representations

Learns the underlying data distribution is crucial

Stochastic by design
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Likelihood Regret Approach
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Likelihood Regret Failure

Histogram showing the non-separability of ID and OOD examples using 
Likelihood Regret scores
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Seasonal Ratio Score success

Histogram showing the separability of ID and OOD examples using 
Likelihood Regret scores
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Seasonal Ratio Score performance

AUROC results for LR, and SR on 23 different datasets for both in-
domain and cross-domain OOD setting. 

In-Domain OOD Cross-Domain OOD

Superior Performance by 
Likelihood Regret

22.3% 17.7%

Ties 15.7% 20.0%

Superior Performance by 
Seasonal Ratio Score 62.0% 62.3%

 In-Domain OOD: Both ID and OOD datasets belong to the same domain 
application. 

 Cross-Domain OOD: Both ID and OOD datasets come from two different 
domains.
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Outstanding Challenges and Future Research 
Directions
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Outstanding Challenges

 Interpretability and explainability of time-series ML models

 Problem space of robustness for time-series ML is relatively 
new
 Need to evaluate on more challenging application settings

 Development of deep generative models for time-series data
 Interpretability is a huge challenge unlike other data modalities

 Generating valid synthetic time-series data (especially long T)
 Deep generative models + OOD detectors?

 Uncertainty quantification for time-series tasks
 Prediction intervals/sets with coverage guarantees

 Lack of large labeled datasets 
 Methods to leverage prior knowledge and weak supervision
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